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The concentration profile of a symmetrical binary (AB) polymer mixture confined between two ‘neutral’ 
repulsive walls is studied by Monte Carlo simulation of the bond fluctuation model, using a chain length 
N = NA = NB = 32 and a distance of D = 20 lattice spacings between the walls. Choosing volume fractions 
and temperatures such that one stays inside the coexistence curve, one has A-rich and B-rich domains 
coexisting with each other, in each kind of domain the minority component being enriched at the surface. In 
contrast to simple Ising lattice gas models of mixtures, the steepest gradient in the volume fraction profile 
does not occur right at the surface, but a few layers away from the wall. Possible reasons for the observed 
flatness of this concentration profile near walls (which agrees with recent experimental findings) are briefly 
discussed. 
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INTRODUCTION AND THEORETICAL 
BACKGROUND 

There has been much recent interest in thin polymeric 
films and in surface properties of polymeric materialsie6: 
The interfacial properties of polymers in this confined 
geometry are important for some applications, and also 
pose challenging problems to their theoretical under- 
standing. 

Since many of these systems are two-component or 
multicomponent mixtures - which in their bulk state are 
typically unmixed since polymers are often not easily 
miscible - with large molecular weight7-9, the surface 
properties of partially incompatible polymer blends are 
of interest. Owing to preferential attraction of one 
component by the wall, the surface enrichment of one 
component is expected10-21 and wetting layers*0~“‘*6 may 
even form. However, even if the surface is perfectly 
‘neutral’ (i.e. no energy preference for monomers of one 
kind), the symmetry between A and B is already broken 
due to unmixing when phase separation has taken place: 
then entropic reasons lead to an enrichment of the 
minority species at the wa1122 (i.e. entropy of mixing is 
more effective near the wall than it is in the bulk). 

Such neutral wall effects are, in fact, well known for 
order-disorder phase transitions in solids, and have been 
studied for a long time22-26. Particular attention has 
been paid, however, only to the regime near the critical 
point, where it is predicted that the order parameter ml 
at the surface vanishes with a different exponent (pi) 
than the order parameter &%b in the bulk (0). From the 
universality principle of second-order phase transitions27 

one can immediately conclude that this behaviour should 
then also hold at the neutral surface of a polymer 
mixture, i.e. the volume fraction of the majority 
component 4A should behave as follows: 

ml Z? ($!A,, - $p)/$:” 0: (1 - T/T&)“, T -+ Tcb (1) 

where Tcb is, the critical temperature of unmixing in the 
bulk and 4Ft the associated volume fraction; the index 1 
stands for the ‘first layer’ adjacent to the wall (or free 
surface). Equation (1) is of the same form as the order 
parameter in the bulk: 

but since pi > p it follows that near T, we have ml < mb, 
i.e. the B-component is enriched at the surface. Accord- 
ing to mean-field theory (applicable to polymers with 
very large degrees of polymerization8)9) one has22-24 
Pi = 1, P= l/2, while the Ising model universality 
class27 (applicable to polymers with degrees of polymer- 
ization that are not too great”‘) yields22>26 pi NN 0.78, 
/3 x 0.325, and thus this minority enrichment is always 
relatively large in the critical region. 

Here we are concerned with the range of this 
enrichment effect and the detailed shape of the enrich- 
ment profile m(z) = ($A@) - 4Tt”)/+r’, as a function of 
distance z from the wall. In small-molecule systems, the 
profile is reasonably well approximated by a simple 
exponential decay22: 

mb - m(z) 0; exp(-zkbJb) (3) 

* Permanent address: INRA Versailles, Science du Sol, Route de Saint- 
Cyr, F-78026, Versailles, France 
t To whom correspondence should be addressed 

<b being the correlation length of order parameter 
fluctuations in the bulk. Strictly speaking, close to Tc.,, 
where [b is large, there is a regime z < [t, where 
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Figure 1 Local order parameter m(z) plotted against distance z for 
films of various thicknesses na (n being the number of layers and a the 
lattice spacing), for the simple cubic Ising lattice model of a binary 
mixture AB, with nearest neighbour interaction J = [t,a - 
(eAA + eaa)/2]/4, shown at two temperatures. Broken draught lines 
indicate estimates for the corresponding bulk order parameter rnb. Note 
that the origin z = 0 here is chosen in the centre of the films, so the 
surfaces have coordinates z = &(n - l)a/2, respectively. For the 20- 
layer film at a normalized inverse temperature J(kaT = 0.232, a case is 
included where the interaction parameter in the surface planes is 
reduced to one half of its value in the bulk (dash-dot curves) From 
ref. 25 
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Figure 2 Sketch of the geometry of the simulation box. Two hard 
(impenetrable but ‘neutral’) walls of area L x L a distance D apart 
confine the two kinds of polymer chains (A,B). In the x and y directions 
parallel to the walls, periodic boundary conditions (pbc) are applied 

equation (3) is not accurate, but it remains true that the 
slope dm(z)/dz is largest at the surface and decreases 
monotonically when one moves into the bulk; see Figure 1 
for a numerical example25. It is evident that away from 
T,, where Et, is of the order of the interatomic distance, 
the surface enrichment is restricted to one or two atomic 
layers near the surface only. 

In polymer mixtures, on the other hand, more 
interesting phenomena are to be expected even away 
from Tcb, since the correlation length &, is at least of the 
order of the gyration radius of the polymers.g~28. 
Experimental techniques are available to measure the 
order parameter profile m(z) near the surfaces of 

polymer mixtures’.3.“m “. and interesting behaviour is 
found” ‘5.‘9 that is often not in ood agreement with 
simple mean-field-type theories 16 (one extends the 
FloryyHuggins description7 of the polymer mixture in 
the bulk by gradient terms’“.“.‘X to handle the inhomo- 
geneous order parameter profile near the surface). 

It is therefore interesting to study this problem by 
computer simulation, and this is the aim of the present 
work. Previous studies have either considered fully 
compatible mixtures”’ or very short chains (e.g. 
N = 10) in the presence of very strong preferential 
surface attraction of one species’“,20, and could not 
address the problem sketched above. 

In the following sections we briefly describe the model 
and the simulation technique, and recall what is known 
about the phase diagram both in the bulk” ~~13 and in 
thin-film geometry34. We present our simulation results 
for a thin-film thickness of D = 20 lattice spacings. 
restricting attention to a symmetrical polymer mixture 
with NA = NB = N = 32 effective bonds. Since this 
simulation is computationally very demanding, in order 
to reach the necessary statistical accuracy on m(z), the 
variation of D and N has not been attempted here, 
although it would be desirable. We then briefly 
summarize our conclusions and present a tentative 
comparison with recent experimental findings”. 

MODEL AND SIMULATION METHODS 

We are interested here in surface properties of both 
‘semi-infinite’22 bulk systems and of thin films of 
thickness D but infinite (i.e. macroscopically large) in 
the remaining directions. Now computer simulations can 
deal only with systems that are finite in all their linear 
dimensions. Hence we choose L x L x D geometry on 
the simple cubic lattice, with two repulsive walls at z = 0 
and z = 20 (all lengths will be measured in units of the 
lattice spacing), and use periodic boundary conditions in 
the x and y directions (Figure 2). Even then, the finiteness 
of L is a serious problem, in particular near the critical 
points. We thus have chosen two values of L. L = 48 and 
L = 80, and verify that finite size effects are negligible for 
the temperatures that are analysed. 

As in previous work on symmetrical polymer mixtures 
in the bulk3’,32, we use the bond fluctuation mode136-38 
to represent the polymer chains. Each chain consists of N 
‘effective monomers’ connected by ‘effective bonds’. 
Each effective monomer blocks all eight sites of an 
elementary cube from further occupation. The effective 
bonds are chosen from a set of bond vectors, which 
include (2 0 0), (2 lo), (2 1 l), (2 2 l), (3 0 0) and (3 lo), in 
addition to all permutations and sign combinations of 
the coordinates of these vectors. We use a volume 
fraction 4, = 0.5 of vacant sites, since various criteria 
show that the corresponding monomer density already 
corresponds to a dense melt 38, but on the other hand the 
acceptance rates for the moves of our dynamic Monte 
Carlo algorithm”’ are not too small. These moves are a 
mixture of random hopping of single monomers by one 
lattice unit”“-“’ and ‘slithering snake’ type’9--42 moves. 
Although this dynamics is unphysical, it is preferable for 
the investigation of static properties since the configura- 
tions of the polymer system decorrelate significantly 
faster than when using the random hopping dynamics 
only4’. 
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Only a single chain length N = 32 is studied, owing to 
the high demands in computer resources for this study. 
When comparing this choice to experiment, one should 
recall that we use a coarse-grained model which can be 
thought of as the result of integrating Y = 3-6 successive 
chemical bonds along the backbone of a real polymer 
chain into one effective bond of the mode143-45. Thus the 
model corresponds to a degree of polymerization Np in 
the range of about Np = 100 to 200. The study of longer 
chains clearly would be desirable, but is not attempted 
here because then the linear dimensions D and L would 
both have to be much larger as well (here we use D = 20 
and L = 48 to 80 throughout); note that for N = 32 the 
gyration radius of a chain is about seven lattice spacings 
and the end-to-end distance about 17 lattice spacings. 
Thus, D is just large enough not to squeeze the 
configuration of single chains. For L = 48, we have 
46 080 lattice sites, i.e. 2880 monomers or 90 chains; for 
L = 80, we have 128 000 lattice sites, 8000 monomers or 
250 chains in the simulation box (remember that each 
effective monomer blocks eight sites and only one half of 
the sites are occupied). Obviously, it does not make sense 
to study collective phenomena in polymer blends with 
systems containing significantly less than lo2 chains. 

As in previous work31-34X37 we choose a square well 
type potential between monomers in its most symmetric 
form, i.e. pairwise interactions: 

CAB = -FAA = -Eaa E 6 (4) 
with an interaction range v%. The motivation for this 
choice is that then all neighbours within the first peak of 
the radial density distribution function contribute to 
these interactions37. We do not assume any change of 
these interactions near the walls (of course, the walls do 
have the effect that neighbours of monomers close to the 
wall, i.e. within the interaction range, are ‘missing’). 

As usua131.32.46.47 
we work in the semi-grand canonical 

ensemble of the polymer mixture, i.e. the independent 
control parameters of the system are the temperature T 
and the chemical potential difference Ap = ,&A - pa 
between A and B monomers. While the total number n = 
nA + ?$ of chains is held fixed, the individual numbers of 
A chains (nA) and of B chains (na) are not fixed, and can 
fluctuate. Recording their numbers and taking suitable 
averages one finds the average volume fractions $h, & of 
A(B) monomers, respectively, as well as the average 
order parameter fi of the system: 

&=$+,%)(I-@v)> &$=;(l-*)(I-$$) (5) 

fi = (InA = nBli/n = (4A - tiB)/(&i + qb) (61 

In addition to the moves mentioned above that are 
required to relax the chain configurations, one then also 
needs moves where A chains are transformed into B 
chains at fixed configuration (or vice versa)31,32.46147. As 
we are mostly interested in the behaviour of partially 
incompatible systems, we study the behaviour at the 
coexistence curve (see below). Because of the symmetry 
of our model against interchange of A and B (which 
holds also for ‘neutral’ walls which do not energetically 
prefer one component), the coexistence curve between 
unmixed A-rich and B-rich phases occurs for Ap = 0, 
and hence only this value of chemical potential difference 
is used in the present simulations. 

Equations (5) and (6) can be readily carried over to 

study the order parameter profile: we simply average in 
each plane Z= l,... , D - 1 the total density p(z) of 
occupied sites as well as the individual densities PA(Z), 
pa(z) and define: 

+) = (IPA@) - PB(z)l)/P(z) 

PC--) = (PA(Z) + PB(z)) 
(7) 

Note that p(z) shows characteristic oscillations for z + 0 
and z ---f D, reflecting the typical response function due 
to the packing constraints for hard particles near a hard 
wa11’9.20,48p54. In order to separate this effect from the 
enrichment of one species at the wall, we have found it 
useful to normalize m(z) with p(z) rather than with the 
overall density, as done for the average order parameter. 
Of course, due to the conservation of the total number of 
monomers we have the sum rule: 

PHASE DIAGRAMS AND GENERAL 
CONSIDERATIONS 

Figure 3 shows the phase diagram of our model, as 
obtained34 in a finite-size scaling analysis”‘.32,35 for a 
wide range of film thicknesses D. One recognizes that in 
the thin-film geometry the critical temperature T,(D) is 
significantly depressed in comparison with the bulk 
critical temperature Tcb; in particular3’-“4: 

kBTc(D = 20)/c = 58.5 + 0.6 
(9) 

80 
t 

one - phase region bulk critical point 

I 

Figure 3 Phase diagram of the symmetrical polymer blend with chain 
lengths NA = Na = N = 32 and interactions defined in equation (4), in 
the plane of variables kBT/c (reduced temperature) and normalized 
volume fraction ~A/(c+~A + @a) of the A monomers. The two curves 
show the coexistence curve for a bulk mixture (D = 20) and for a 
mixture in thin film geometry with thickness D = 20. Inside each curve 
the system does not exist as a homogeneous phase in thermal 
equilibrium, but is a mixture of macroscopic regions of two phases, 
whose volume fractions are given by the two branches of these 
coexistence curves (to the left and to the right of the critical points 
marked by dots, which occur at $T’/(4A + @a) = 0.5 due to the 
symmetry of the model). Above the existence curve, the system is 
macroscopically homogeneous (notwithstanding microscopic inhomo- 
geneities due to the enrichment layers of the respective minority 
components at the walls). From ref. 34 in changed form 
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Figure 4 Schematic description of the state of a thin film of thickness 
D at an average volume fraction 4A such that $fjOex < @A < $$mX 
(cf. Figure 3). Here, $iLwX, 4fA0,, are the volume fractions at the 
branches of the coexistence curve for the thin film, while &&,, and 
&2) ,+,_ denote the branches of the coexistence curve in the limit of bulk 
samples, D -+ co. We then expect domains of the A-rich phase (which 
has the volume fraction I$(‘) A ,,,,) and the B-rich phase (volume fraction 
4i)nCh) to be separated by AB interfaces that run across the film. The 
linear dimensions of these domains in thermal equilibrium are 
macroscopic, such that both the volume fraction taken by interfaces 
and their relative contribution to the total free energy of the system is 
negligibly small. The profile of the volume fraction dA(z), which is 
simply related to n?(z) (equation (7)) via 4*(z) = 4 [! - m(z)]p(z), is 
shown schematically both for the A-rich and the B-rtch phase. Note 
that in our symmetric model these profiles are simply mirror images of 
each other along the line of’/p(z) = cp”A”/(4, + (Pa) 3.Q.5. Fof, thick 
films these profiles reach the bulk coexistence values 4x’,,,,, dj4Loex in 
the centre of the film. Shaded areas denote the surface ‘excess 
concentrations discussed in the text 

Near kgTc(D)/c simulations of finite lattices are strongly 
affected by finite size effects. For this reason we can study 
with films of thickness D = 20 the properties of semi- 
infinite systems only at temperatures which are well 
below T,(D = 20). This strong depression of the critical 
temperature in thin films is due to the ‘missing 
neighbours’ at the surfaces, and the fact that in quasi- 
two-dimensional systems statistical fluctuations are 
stronger than in three-dimensional ones, and lead to a 
Aattening of the coexistence curve34 (the shape of the 
coexistence curve near T, is controlled by a crossover34 
from the exponent p M 0.325 of the universality class of 
the three-dimensional Ising mode127 to the exponent 
p = l/8 of the universality class of the two-dimensional 
Ising mode122). Thus, in thin-film geometry binary blends 
are more miscible than in the bulk. However, we are here 
exclusively concerned with (partially) unmixed phases, 
i.e. systems that are either right at the coexistence curve 
or inside it. In the latter case, we have a macroscopic 
mixture of A-rich and B-rich domains in the thin film, as 
indicated schematically in Figure 4. Denoting the volume 
fractions at the B-rich (A-rich 

2 
branch of the coexistence 

curve in the thin jilm as Qki0,X, $E,b,,, the volume 

fraction of the A-rich domains X’ is given by the lever 
rule: 

The linear dimensions of the A-rich and B-rich domains 
in the .u__Y directions should then scale like VT:-. 
Note that ideally there should be only two domains 
separated by a single interface, since this state represents 
the absolute minimum of interfacial free energy con- 
tributions, but in a real system we expect that due to the 
slowness of polymer diffusion a multidomain configura- 
tion will be present, even after careful annealing. 

Since for thick films we expect that $A (z) will reach the 
value $giO,, (or 4 FL,,) in the centre of the film, it makes 
sense to define surface excess concentrations as follows2” 
(for our discrete model, integrals are understood as 
summations, of course): 

1 
D/2 

4A 
S(B) s lim 

D ~-4 oc 
} B-rich phase (11) 

, 0 
dZ{4A(Z) - d!,:,,, 

012 
4.A ‘CA) 5 lim D__r 

J’ 
o d+&) - O!$LO,,) A-rich phase. (12) 

Fsqor-ieutral surfaces we expect that $2”’ is positive while 
4A is negative. 

In our symmetric model we obviously have the 
symmetry relation 

$A -dy S(A) = (13) 

but this relation is not expected to hold in real systems 
lacking any particular symmetries between A and B and 
then the two profiles shown in Figure 4 must be studied 
separately. 

Since the average volume fraction in the thin film is 
simply an integral over the profile: 

we have the well known relations2’: 

for the A-rich phase, and 

(j(I) ($1) 
A.coex = A.coex 

(14) 

(15) 

(16) 

for the B-rich phase. Thus an analysis of the coexistence 
curves for different thicknesses D (Figure 3) immediately 
yields information on these surface excess concentra- 
tions. We emphasize again that this enrichment (deple- 
tion) of A in the B-rich (A-rich) phase at the walls has 
nothing to do with a preferential attraction of a species 
by the wall, but is a purely entropic effect. 

NUMERICAL RESULTS FOR THE ORDER 
PARAMETER PROFILES 

Figure 5 shows the order parameter profiles m(z) for the 
four temperatures kBT/c = 40, 45.45, 50 and 55.56. 
Owing to the symmetry against interchange of both 
walls, which are perfectly equivalent, the profiles must be 
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Figure 5 Order parameter profiles m(z) VETSUS z shown at four 
different temperatures. In each case two choices of the linear dimension 
are shown. While for c/kgT 2 0.02 between L = 48 and L = 80 are 
small and only due to statistical errors (which typically are estimated to 
be of the size of the symbols), data for c/kBT = 0.018, L = 48 clearly 
suffer from finite size effects. Broken straight lines indicate the values of 
the bulk order parameter mb in each casess. Arrows show the gyration 
radius and its smallest component in the eigencoordinate system of the 
gyration tensor33 

symmetric around their centre (z = 10). Slight deviations 
from symmetry are at most of the size of our statistical 
errors, which are about the size of the symbols. 

At the three lower temperatures both choices for L 
yield results that nicely coincide with each other, 
indicating that finite size effects associated with the 
finiteness of the linear dimension parallel to the wall are 
still negligible. This is gratifying, since the temperature 
kgT/c = 50 is only about 14.5% below the critical 
temperature kBTc(D)/t- (equation (9)). Of course, if we 
move still closer (kgT/c = 55.56 is about 5% below 
kBT,(D)/c), we do see pronounced finite size effects. 
However, experience with other analyses31-34 suggests 
that even in this case the data for L = 80 should be close 
to the limiting behaviour for L + co already. 

When we compare the profiles in Figure 5 with those 
obtained for lattice gas models (Figure 1), we note a 
pronounced difference in the shape of these profiles. 
While in the Ising case the profile has its maximal slope 
always in the first layer right near the wall, this is 
obviously not true in the polymer mixture, rather we 
observe a region of several layers at the surfaces where 
the profile is very flat. Note that this region is distinctly 
smaller than the gyration radius (R$1/2 of the polymer 
chains in the bulk; rather this quantity (in the tempera- 
ture region distinctly below Tc studied here) sets the scale 
on which the profile essentially reaches the value of the 
order parameter mb in the bulk. However, one must 
remember that (Ri)t/2 is not expected to be the relevant 
length scale very close to the surface, due to the 
orientational effect of the wall on the shape of the 
polymer coils48-54. Remember that the instantaneous 
shape of a Gaussian polymer coil is not a sphere, but 
rather it is a ‘flattened-egg-shaped’ object, with a 
gyration tensor that has three distinct eigenvalues. The 
axes giving the eigendirections of this tensor are 
randomly oriented in the bulk, and then on average the 
coil is spherically symmetric. At the surfaces, however, 
best packing of the monomers is achieved if the axis 
corresponding to the largest eigenvalue is parallel to the 

wall (then the end-to-end distance of a polymer close to 
the wall is parallel to the wall), and the axis correspond- 
ing to the smallest eigenvalue is oriented along the z-axis 
perpendicular to the wall. Thus the polymer lies 
essentially flat on the wall, without major distortion of 
its internal shape (which would be very costly in terms of 
the entropic elastic forces of the coil). Only when we use a 
strong binding potential to the wall, as done in refs 19 
and 20, does it become possible to get a significant 
distortion of the shape of such a polymer coil attached to 
the wall, which ultimately takes a flat pancake-like shape 
for very strong wall-monomer interaction55. 

From this argument we expect that the order para- 
meter profile should be flat near the walls on the scale 
given by this smallest eigenvalue Rr” of the gyration 
tensor. This quantity has recently been measured in the 
context of the study of AB interfaces in strongly 
incompatible mixtures33 (where, a similar orientational 
effect on coil shapes occurs), l$“” = 1.75. This quantity 
is also indicated by an arrow m Figure 5. (Actually we 
show Rf” + 1 since the first layer available for mono- 
mers is z = 1 rather than z = 0.) 

The fact that Rp, obtained in a study of the 
interfacial structure of an AB mixture, also determines 
the length scale over which the m(z) profile is flat, is 
evidence for the argument presented above that a hard 
wall reorients the polymers without distorting their 
internal structure. 

We emphasize that these effects are not captured by 
the simple models using a Flory-Huggins-type free 
energy amended by gradient terms” and extensions 
thereof’6-‘8, since all these theories do not consider 
explicitly the configurational properties of the polymer 
coils in sufficient detail. Although at an AB interface and 
a hard wall coils become oriented parallel to the interface 
or to the surface, respectively, the profiles are quite 
distinct in shape near z = 0 in both cases. In the case of 
the interface the coils may cross the plane z = 0 for a 
distance of about Rr so that the B chains attached to 
the interface make excursions into the A-rich side of the 
interface and vice versa. Thus for the interfacial problem 
the steepest slope of the profile does occur at z = 0 (ref. 
33) unlike Figure 5. As a consequence, we do not 
confirm the assertion of mean-field” theory that the 
profile near a wall is just a piece of the interfacial profile, 
cut in such a way that one satisfies suitable boundary 
conditions at the surface. Gratifyingly, this flattening out 
of concentration profiles near walls has been seen in 
recent experiments29. 

It is also interesting to note that for the thickness 
D = 20 (which is roughly D M 3(R$“‘) the profile even 
in the centre of the film falls slightly below the bulk value, 
for all temperatures shown. Thus bulk behaviour can be 
expected in polymeric films only if D > {Ri) I”. 

Comparing with the lattice gas problem of Figure 1, 
choosing a film thickness D = 20 for the polymer 
problem really would correspond to choosing, say, 
n = 5 for the lattice gas problem. As is evident from 
Figurc 1, one can estimate ml (the order parameter of the 
first layer adjacent to the surface) rather well already 
even if m(z) does not yet reach mb in the centre of the 
films. Similar conclusions have also been drawn from 
other simulations studying homopolymer melts close to 
hard walls56-58, which show that a change in D influences 
the shape of the profiles of various quantities (other 
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Figure 6 Plot of the local order parameter at the surface ml 
(- m(z = l)), the local order parameter in the centre of the film 
(nr(z = 10)) and the order parameter of bulk systems33 (q,) wsus 
reduced temperature. Arrow shows the location of the critical 
temperature of the film 
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Figure 7 Semi-log plot of the deviation of the order parameter from its 
value in the centre of the film, Am(z) E rn(z = 10) -m(z), plotted 
versus z. Straight lines indicate rough estimates of the decay constant < 
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Figure 8 Plot of m(D) at T = 40 W~SUS D-t. The arrow shows mb. as 
calculated in ref. 33. The slope of the straight line for D-’ -+ 0 yields the 
order parameter excess tn, 

than m) in the middle of the film, but not close to the 
wall. Figure 6 compares the temperature dependence of 
flrb,m(z = 10) andm,. Ofcourse,near T = T,(D).ml no 
longer resembles the surface layer order parameter of the 
semi-infinite system; rather ml and n?(z = D/2) then 
become similar again, since near T,(D) the whole profile 
becomes flat, the system behaves in a quasi-two- 
dimensional fashion, and the whole profile n?(z) for all 
z vanishes with an exponent of the two-dimensional Ising 
universality class: 

m(z) x [l - T/T,(D)]li8 all z, T + T,(D) (17) 

In ref. 34 this was already demonstrated for the average 
order parameter of the thin film, ti = (1 - D $) dz m(z), 
cf. equation (14). 

When we study the approach of m(z) against its 
maximum value m(z = D/2), in order to test for 
equation (3), it, is clear that only data in an intermediate 
regime 1 + Ri” << z K D/2 should be used. The film 
thickness D = 20 clearly is not large enough to yield such 
a regime, however. In order to extract at least a rough 
estimate, these inequalities are relaxed to 1 + Ry 5 z 5 
D/2, and then a regime from 4 I z I 7 is compatible 
with the expected exponential decay. However, as shown 
in Figure 7, the resulting correlation length is smaller 
(namely 2.4 I < 5 2.6) than the value expected theo- 
r&ally9 for temperatUI'eS Well below T,, &, z 
!(R;)/3)“2 x 4. This apparently faster decay is presum- 
ably again a consequence of the fact that we are working 
with relatively very thin films. Our data show that one 
should watch carefully for finite thickness effects if one 
wishes to extract bulk quantities from measurements on 
thin films, as is sometimes done experimentally5’. 

Finally, Figure 8 shows a test of equation (15) (which 
can be rewritten as A = Mb + (2/D)&, where m, is a 
corresponding ‘surface excess order parameter’22). It is 
seen that this relation holds for large D, while for small D 
distinct deviations are noted. This was expected, of 
course, since Figure 5 shows that bulk behaviour in the 
centre of the film is reached only at very low tempera- 
tures for D = 20, and for smaller values of D (Figure 8 
includes data from ref. 34 where D was varied, but the 
profiles have not been studied for other values of D); 
even more pronounced deviations from equations (15) 
and (16) are expected. 

CONCLUDING REMARKS 

In this study arguments were presented to show that at 
the surface of a symmetric (NA = Nn) binary mixture 
with asymmetric composition in the bulk ($A # &), a 
surface enrichment of the minority component occurs for 
purely entropic reasons, i.e. without any preferential 
forces attracting this component to the wall. We have 
investigated this phenomenon for partially incompatible 
mixtures, held at the coexistence curve (as explained in 
Figure 4, this treatment then describes surface effects on 
unmixed systems at an average concentration inside the 
coexistence curve as well). 

A striking feature of our results is the flatness of our 
concentration profiles close to the walls (Figure 5), which 
contrasts with corresponding results for the lattice gas 
model (Figure I) and with theoretical treatments of 
surface enrichment in polymer mixtures”~‘6-‘8. We 
interpret this result in terms of the connectivity of the 
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0.8 I 

Figure 9 Comparison of an experimental surface enrichment profile 
(full curve) with a corresponding self-consistent meanfield calculation 
(dash-dot curve). Data are for a mixture of deuterated (A) and 
protonated (B) poly(ethylene propylene) (PEP) of degree of polymer- 
ization N = 2250, at 7’ = 70°C and a bulk volume fraction q& = 0.099 
of deuterated PEP. The experimental profile resulted from a neutron 
reflection analysis of a free surface of this mixture. After the PhD thesis 
of L. Norton, Cornell University, 1994, as reproduced by E. J. Kramer 
in ref. 29, in changed form 

chains and their resistivity against elastic deformations; 
the closest distance that a minority chain gets to the wall 
is given by the smallest eigenvalue Rp of its gyration 
tensor, and hence on scales z < RF the profile is 
essentially flat. For our chain length (N = 32), we have34 
R y z (R;)lf2/4, d an since for many properties our model 
is already representative for the behaviour of very long 
chains38, we assume that this result can be extrapolated to 
real polymers as well. In this context it is gratifying to recall 
that a similar behaviour has been found experimentally, 
simultaneously with our study and independently from it, 
in symmetrical mixtures of protonated and deuterated 
poly(ethylene propylene)29. Figure 9 provides a sketch of 
the typical experimental results. The profile does exhibit a 
flat part over a distance z = O.S&,,, and noting that for small 
bulk concentration $A the correlation length is9 &, M 
((Ri)/3)ii2, the distance 0.5& is indeed close to Rr. Of 
course, one should not expect that the magnitude of the 
surface enrichment seen in the experiment is comparable to 
the simulation: we deal here with a model that is ‘most 
symmetric’ in its interactions, eAA = ena, and hence a 
preferential attraction to the surface resultingm from a term 
EU - eaB # 0 is absent in the simulation, but presumably 
present in the experiment. In any case, it is gratifying that 
the results from our model calculation seem to be 
applicable to real systems. We hope that our study will 
stimulate additional experiments, as well as the develop- 
ment of a theory that describes the concentration profile 
more precisely. We emphasize that the concentration 
profile resulting from our calculation cannot be considered 
as a piece of a concentration profile between coexisting 
phases, ‘cut oII’ by the boundary condition to enforce the 
surface layer concentration 4i, as in mean-field theory”. In 
this interfacial problem, chains exist which have their centre 
of gravity right in the centre of the interface34, and hence 
the position of the steepest gradient occurs (for NA = &) 
exactly at the critical concentration, i.e. for order parameter 
m(z) = 0, unlike the present case where almost no chains 
have their centre of gravity closer to the surface than Rp. 
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